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Abstract

Sample Class Prediction (SCP) models are powerful tools that can use mass spec-

trometry data from highly complex samples to identify differences in sample classes,

such as contamination. In this case, a method was developed that uses SCP to accu-

rately detect and classify contamination in shochu samples, for use in quality 

assurance (QA) and quality control (QC) during the manufacturing process.

Introduction

Shochu is a distilled alcoholic beverage that has been made in Japan since at least
the 16th century. It typically contains 25% alcohol by volume and is produced by
single or multiple distillation of rice, barley, potatoes or brown sugar. In contrast to
wine or traditional liquor, shochu is derived from fermentation by mold instead of
yeast. A boom in the consumption of shochu in Japan occurred in the early 2000’s,
as it became trendy among young drinkers, particularly women. It is perceived to
have health benefits such as prevention of thrombosis, heart attacks, and diabetes.
As a result, consumption of shochu now exceeds that of sake in Japan. 

Quality control for this commercially valuable product is critical to maintain cus-
tomer satisfaction. Contamination from items such as machine oil and rubber gloves
can occur during the manufacturing process. This affects the odor and taste of the
product and threatens sales volume for the manufacturer. Timely identification of
contaminated product, before it is bottled and shipped, is critical to maintaining
brand loyalty. 
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This application note demonstrates the feasibility of develop-
ing a model that can detect the presence of contaminants in
shochu during the fermentation and bottling processes. It 
uses a nontargeted compound analysis approach similar to
that recently used for wine classification [1] and determine
whether extra virgin olive oil will pass the sensory test [2].
The data were obtained by gas chromatography/mass spec-
trometry (GC/MS), using the Agilent 7890 GC System
equipped with a low thermal mass (LTM) column and coupled
to the single-quadrupole Agilent 5975 GC/MS system.
However, the total ion current (TIC) traces revealed little dif-
ference between most of the sample conditions. Further data
processing was required to reveal these differences. The data
was then processed using NIST Automated Mass Spectral
Deconvolution and Identification Software (AMDIS) and ana-
lyzed using a multivariate software package in Mass Profiler
Professional (MPP) that includes class prediction algorithms. 

Clean shochu samples and samples intentionally contami-
nated with rubber and machine oil were analyzed, and the
data was filtered three different ways to create entities.
Sample Class Prediction (SCP) models were then applied to
the entities generated by each filter to determine which model
was most suited for routine analysis and screening for conta-
minants. For this data set, the Decision Tree model applied to
data filtered using any of the three applied filters provided
100% accuracy in determining the presence of contaminants
in samples that were not used to train the model. The Support
Vector Machine (SVM) model also provided 100% accuracy,
but only when used with data filtered through the Analysis of
Variance (ANOVA) plus 45% Coefficient of Variation (CV) filter. 

Experimental

Samples
In total, 10 shochu samples were obtained from various
sources, some spiked with known amounts of detergents,
insecticides, rubber gloves, or machine oil. Samples GA and
GB were prepared by adding 20-23 mg of a piece of rubber
glove to 1 g of shochu. Sample DA was prepared by adding
10 mg of chlorine detergent to 1 g of shochu, while sample DC
was prepared by spraying insecticide detergent (two sprays)
into 1 g of shochu. Sample OB was prepared by adding 10 to
15 mg of machine oil to 1 g of shochu. The sample names and
their sources are listed in Table 1.

Instruments
This study was performed on a 7890 GC System equipped
with a low thermal mass (LTM) module and coupled to a 5975
GC/MS system. The instrument conditions are listed in Table
2. The Gerstel MPS2 Autosampler was used to carry out the
solid phase microextraction (SPME) sample preparation.

Table 1. Sample Types Analyzed

Sample name Origin Contaminants

IOSK Osaka None

ITKO Tokyo None

IUSA San Jose None

DA Osaka Chlorine detergent

DC Osaka Insecticide detergent

GA Osaka Rubber glove A 

GB Osaka Rubber glove B

OB Osaka Machine oil B

Table 2. GC and Mass Spectrometer Conditions

GC run conditions

Pre-column None

Analytical column 10 m × 0.18 mm, 0.18 µm DB-1ms LTM Column
Module  (p/n 100-2000LTM)

Injection method SPME (Supelco 57341-U), 1 cm injection

Inlet temperature Isothermal at 240 °C

Injection mode 1.52 minute splitless at 72 kPa 

Oven temperatures GC oven:  

11.83-minute hold at 200 °C (isothermal)

LTM module: 

120-second hold at 35 °C

35 °C to 240 °C at 30 °C/min

Hold at 240 °C for 3 minutes

Column flow 1.1 mL/min constant flow

Carrier gas Helium

Transfer line 
temperature

240 °C

GC run time 11.83 minutes

MS conditions

Ionization mode EI

Ion source temperature 230 °C

Acquisition mode Scan (35–450 amu)

Trace ion detection On 

Tuning atune.u
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Sample Preparation
The volatile odor components from each sample type were
collected using SPME. Each shochu sample was transferred
to 20-mL headspace vials. A 100 µm × 1 cm polydimethylsilox-
ane (PDMS) SPME fiber (Supelco 57341-U) was exposed to
the headspace of the sample at 40 °C for 40 minutes with no
agitation. Volatile compounds absorbed on the SPME fiber
were thermally desorbed at 240 °C for 1.5 minutes into an
injection port. The fiber was baked out in a bake station at
260 °C for 5 minutes after each injection. 

Data Processing and Statistical Analysis
Component extraction from the GC/MS data was done using
AMDIS on the Agilent MSD Productivity Chemstation
(E.02.02). The ELU files from AMDIS were imported into MPP
for differential analysis.

Mass Profiler Professional (B.02.02) was used for data filter-
ing and statistical analysis, and Agilent Sample Class
Predictor (B.02.) was used to generate sample class predic-
tion (SCP) models. The data processing steps are shown in
Figure 1. 

• Filter and alignment of compound peaks across samples 

• Filtering the entities 

• Principal Component Analysis (PCA)

• Hierarchal Cluster Analysis (HCA)

• Create prediction models 

Results and Discussion

Data Acquisition 
The analysis of shochu samples was performed to survey the
compounds that could be detected by GC/MSD (Figure 2).
AMDIS was used to extract components from the GC/MS
data. The data consisted of four replicates each of rubber,
detergent, and machine oil contaminated shochu, 23 repli-
cates of uncontaminated shochu sold in Osaka, 18 replicates
of shochu sold in Tokyo, and 13 replicates of shochu sold in
San Jose, CA. Typically, 330 to 380 peaks were identified by
chromatographic deconvolution. The total ion current (TIC)
traces revealed little difference between most of the sample
conditions. Further data processing was required to reveal
these differences.

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00
Time

TIC: IOSK_1.D¥DATA.MS

Figure 1. Statistical analysis workflow for generation of predictive models of contamination in shochu from GC/MSD data.

Figure 2. A typical total ion chromatogram (TIC) for analysis of uncontaminated shochu, in this case, sample IOSK.
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Data Filtering
As the data set was imported into Mass Profiler Professional
(MPP) software, the unidentified components were aligned by
spectral similarity and retention time window to form an
entity list of 2,376 components. Three entity filters were eval-
uated to identify entities that could be used to differentiate
the various sample types (Figure 3).

The MPP Frequency Table (Filter 1) revealed that many of the
compounds were unique to one sample. In fact, 226 entities
passed this filter. The one-way analysis of variance (ANOVA)
filter (Filter 2) was used with a probability p value of .05
(95% probability that the entity is significant), resulting in
1,080 entities. The third filter selected entities which passed
the one-way ANOVA filter and the coefficient of variation (CV)
filter set at less than 45% for all samples. The objective of
using ANOVA plus CV<45% was to intentionally create a
strong filter and investigate its impact on the accuracy of the
resulting SCP model.

Figure 4. Principal Component Analysis (PCA) scores illustrate that Filter 3
(ANOVA + 45%CV) provides the best separation between the
sample types.

Principle Component Analysis
Principal Component Analysis (PCA) was done on the entity
lists resulting from the three filters. The PCA score plots are
shown in Figure 4, illustrating that the ANOVA + 45% CV filter
provides the best separation of all of the sample types,
enabling the most accurate SCP models.

Figure 3. The three data processing filters used to screen entities that were
then used to construct SCP models.
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Hierarchical Cluster Analysis (HCA)
Cluster analysis is a powerful method to organize compounds
or entities and conditions in the dataset into clusters based
on the similarity of their abundance profiles. Hierarchical
Clustering is one of the simplest and most widely used clus-
tering techniques for analysis of mass abundance data. The
method follows an agglomerative approach in which the most
similar abundance profiles are joined together to form a

group. These are further joined in a tree structure, until all
data forms a single group. HCA of the entities generated by
Filter 3 found 33 components that distinguished contaminated
samples from uncontaminated samples (Figure 5). A library
search of these contaminant components against the Wiley
9th/Nist08 library provided identification for eight of them
(Table 3).
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Figure 5. Expanded view of the hierarchical cluster analysis (HCA) heat map for association of compounds detected in the various sample types. The map
shows 23 of the 33 components that distinguished contaminated samples from uncontaminated samples. The color range indicates the peak inten-
sity of each compound for each condition: DA; None (uncontaminated machine oil); DC, and so forth. Compounds with low intensity are shown in
blue; those with intermediate intensity are shown in yellow, and those with high intensity are shown in red. The color range bar indicates the relative
intensity of each compound.
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Table 3. Identity of Contaminant Compounds

Sample class Compound

Machine oil Phenol, 2,6-bis(1,1-dimethylethyl)-4-methyl- (CAS)

Rubber B 2-Isopropyl-5-methyl-1-heptanol

1-Undecene 

Detergent A Heptadecanoic acid, ethyl ester 

1-Nonadecene 

1-Decanol (CAS) 

Detergent C Benzamide, N,N-diethyl-3-methyl- 

1,1'-Biphenyl, 3-(1-methylethyl)- Table 4. SCP Model Accuracy (%) After Training

Algorithm Filter 1 Filter 2 Filter 3

Decision tree 100% 100% 100%

Naïve bayes 99 100 99

Neural network 69 73 69

Partial least square
Discriminant analysis

90 90 90

Support vector model 100 100 100

Table 5. SCP Model Accuracy (%) for Unknown Samples

Algorithm Filter 1 Filter 2 Filter 3

Decision tree 100% 100% 100%

Naïve bayes 92 100 92

Neural network 50 50 50

Partial least square 
discriminant analysis

50 42 33

Support vector model 83 83 100

Class Prediction Models
The goal of classification is to produce general hypotheses
based on a training set of examples that are described by sev-
eral variables and identified by known labels corresponding to
the class information. The task is to learn the mapping from
the former to the latter. Numerous techniques based either on
statistics or on artificial intelligence have been developed for
that purpose [3]. In this case, the goal was to determine
whether a shochu sample was contaminated, based on the
33 compounds that were shown to be associated with 
contamination.

Five different algorithms - Decision Tree (DT), Support Vector
Machines (SVM), Naïve Bayes (NB), Neural Network (NN),
and Partial Least Square Discrimination Analysis (PLSDA) -
were evaluated to determine which algorithm was best suited
for screening for contaminants. Each algorithm was tested
with data sets produced using the three data filters.

The Decision Tree algorithm uses a  sequence of if-then-oth-
erwise decisions arranged as a tree. A sample gets classified
by following the appropriate path down the decision tree. The
Support Vector Machines  algorithm attempts to separate
samples into classes by imagining these to be points in space
and then determining a separating plane which separates the
two classes of points. The Naive Bayesian classifier assumes
that the effect of an attribute on a given class is independent
of the value of other attributes. This assumption is called the
class conditional independence. A Neural Network is a paral-
lel system inspired by the structure and/or functional aspects
of biological neural networks, and it is capable of resolving
paradigms that linear computing cannot. Partial Least Square
Discrimination Analysis is particularly adapted to situations
where there are fewer observations than measured variables.
It is used to sharpen the partition between groups of observa-
tions, such that a maximum separation among classes is
obtained. 

The first step in building the classification model was to train
the models with the data, using each of the five model algo-
rithms with each of the three data filters. To validate each
model, the same training data were used. Although redun-
dant, this is a valid statistical procedure. The prediction accu-
racy of each the five models with each of the data filters for
the training data is shown in Table 4. The Support Vector
Model and Decision Tree algorithms were able to validate the
models to 100% accuracy using all three filters.

The second step was to test each model with unknown
sample data. An additional 12 samples that were not used to
create the models were used for this purpose (Table 5). Using
these samples, the DT model is more robust when predicting
unknown contamination, since it provides 100% accuracy
with all three filters (Table 5). In contrast, the SVM model pro-
vides 100% accuracy only with the ANOVA + 45% CV filter
(Filter 3). This implies that there is a limited set of entities
that heavily influence the prediction model. The PLSDA model
did a very poor job of identifying contaminated samples. The
variation in behavior of the modeling algorithms illustrates the
need to choose the best model for a given set of data.
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Conclusions

Sample Class Prediction (SCP) provides a robust way to deter-
mine shochu quality that can be used in a production QC envi-
ronment. Small differences between samples can be clearly
seen, using a multivariate analysis of GC/MSD data.

In order to generate the SCP model with the highest accuracy
of prediction, the data quality is crucial. This facilitates con-
struction of the right filtering and prediction model for the
samples. SCP will provide the best results when the sample
data is properly filtered and the proper prediction algorithm is
used. Multiple prediction models allow the evaluation and
customization of different prediction models to the analysis.
Better entity lists enable the development of better SCP pre-
diction models which in turn enable improvement of the
workflow of QA and QC of food analysis. 
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For more information on our products and services, visit our
Web site at www.agilent.com/chem.



www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change
without notice.

© Agilent Technologies, Inc., 2012
Printed in the USA
August 2, 2012
5991-0975EN


